Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669648

RESUMO

This work further explores the possibilities for designing the high-temperature electrical performance of the thermoelectric Ca3Co4O9 phase, by a composite approach involving separate metallic iron and nickel particles additions, and by employing two different sintering schemes, capable to promote the controlled interactions between the components, encouraged by our recent promising results obtained for similar cobalt additions. Iron and nickel were chosen because of their similarities with cobalt. The maximum power factor value of around 200 µWm-1K-2 at 925 K was achieved for the composite with the nominal nickel content of 3% vol., processed via the two-step sintering cycle, which provides the highest densification from this work. The effectiveness of the proposed approach was shown to be strongly dependent on the processing conditions and added amounts of metallic particles. Although the conventional one-step approach results in Fe- and Ni-containing composites with the major content of the thermoelectric Ca3Co4O9 phase, their electrical performance was found to be significantly lower than for the Co-containing analogue, due to the presence of less-conducting phases and excessive porosity. In contrast, the relatively high performance of the composite with a nominal nickel content of 3% vol. processed via a two-step approach is related to the specific microstructural features from this sample, including minimal porosity and the presence of the Ca2Co2O5 phase, which partially compensate the complete decomposition of the Ca3Co4O9 matrix. The obtained results demonstrate different pathways to tailor the phase composition of Ca3Co4O9-based materials, with a corresponding impact on the thermoelectric performance, and highlight the necessity of more controllable approaches for the phase composition tuning, including lower amounts and different morphologies of the dispersed metallic phases.

2.
Front Chem ; 5: 131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379781

RESUMO

Amine-functionalized bridged silsesquioxanes (BSs) were synthesized from bis[(3-trimethoxysilyl)propyl] amine via a solvent-mediated route. BS-1 and BS-2 were obtained at neutral pH with sub- and stoichiometric amounts of water, respectively, and high tetrahydrofuran content. BS-3 was prepared with hyperstoichiometric water concentration, high tetrahydrofuran content, and hydrochloric acid. BS-4 was synthesized with hyperstoichiometric water concentration, high ethanol content, and sodium hydroxide. BS-1 and BS-2 were produced as transparent films, whereas BS-3 and BS-4 formed white powders. Face-to-face stacking of flat or folded lamellae yielded quasi-hydrophobic platelets with emission quantum yields of 0.05 ± 0.01 (BS-1 and BS-2) or superhydrophilic onion-like nanoparticles with exciting emission quantum yields of 0.38 ± 0.03 (BS-3) and 0.33 ± 0.04 (BS-4), respectively. The latter two values are the largest ever reported for amine-functionalized siloxane-based hybrids lacking aromatic groups. Fast Grotthus proton hopping between = [Formula: see text]/ = NH groups (BS-3) and = N-/ = NH groups (BS-4), promoted by H+ and OH- ions, respectively, and aided by short amine-amine contacts provided by the onion-like morphology, account for this unique optical behavior.

3.
J Phys Chem B ; 114(1): 77-83, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19968320

RESUMO

Three different types of photoluminescent hybrid materials containing trivalent lanthanide (Ln(3+) = Eu(3+), Tb(3+)) ions, chitosan, and silica have been prepared with different structural features. The different silica sources lead to diverse microstructures of hybrid materials, with silica being homogeneously dispersed in the chitosan materials (LnChS-H), or forming a core-shell morphology. Postsynthesis treatment is necessary for embedding the luminescent probe. The Ln(3+)-based materials have been investigated by photoluminescence spectroscopy (12-300 K). The chitosan-Eu(3+)-related local environment is maintained in the EuChS-H hybrid material. The emission features of the core-shell materials are characterized by the presence of two Eu(3+) distinct local environments, one associated with the chitosan core and the other with the silica shell.


Assuntos
Quitosana/química , Elementos da Série dos Lantanídeos/química , Dióxido de Silício/química , Európio/química , Luminescência , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...